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ABSTRACT

The results of detailed experimental and theoretical considerations
relating to multiple hologram recording in lithium niobate is reported.
The following problem areas are identified and discussed: 1) the angular
selectivity of the stored holograms, 2) interference effects due to the
crystal surfaces, 3) beam divergence effects, 4) material recording sen-
sitivity, and 5) scattered light from material inhomogeneities.
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I.. INTRODUCTION _

A program to study high capacity recﬁrding in electro-optic crystals
was undertaken, This study focused on the problems associated with very
high capacityrstorage (through multiple hologram superposition) and the
use of lithium niobate as the recording medium.

A number of important problem areas were identified and studied.

These included: 1) the angular selectivity of the stored holograms, 2)
interference effects due to the erystal surfaces, 3) beam divergence effects,
4) material recording sensitivity, and 5) scattered light from material
inhomogeneities,

Single hologram and multiple hologram recording experiments were per-
formed on a vibration isclation taBle with an argon laser using the experi-
mental cdnfiguration shown in Fig. 1. Holograms were analyzed experimentally
by feading them with laser light of 488.0mm, 514.5nm, and 632.8nm wavelength.

To properly interpret the above experimental results, a number of
analytical studies were initiated to provide predictions of the read-out

parameters of the volume holograms.
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IT. ANGULAR SELECTIVITY

Because of the three-dimensional nature of the crystal, holograms
recorded in lithium niobate are volume holograms., These holograms are
produced directly (without processing) by the interference of laser beams
of the appropriate wavelenéth intersecting in the crystal. The volume
nature of this holographic storage is especially interesting.sihce it
indicates the possibility of very high capacity information stofagé.

Volume (thick) holograms exhibit a number of properties in addition
to those possessed by two~-dimensional (ﬁhin) holograms. Among these pro-
perties is angular selectivity--~the need for the reference beam to illu-
minatelthe hologram at a precise aﬁgle in order to achieve reconstruction.
I1lumination outside qf this angular corridor-produces a rapidly decreasing
intenéity of the recpnstructed data. To perform these diagnostic experi-
ments plane wave holograms (caused by the interference of two plane waves)
were used. Ewen though this is a special case, a general hologram may be
constructed by the superposition of an infinite number of plane wave holograms.
Reconstruction of a wvolume hologram i is possible (with half maximum
diffracted power or greater) only over the range of wavelengths given by

Ah L
')L—’ =~ cot D ;:- (1)

and only over the range of angles given by

86 & Al RGP ¢ - (2)

where pj3 and pAp are centered about the writing wavelength 3, and the writing

angle, p. The thickness of the hologram is given by t, L is the fringe



spacing of the fundamental grating (L = 3/2sing), n(},P) is the appropriate
index of refraction for the probing beam wavelength and polarization, and |
A(Tb) is the angular selectivity coefficient (approximately equal to unity).
These types of properties are in actuality just manifestations of the
increased storage capacity of the volume storage medium.

The experimental configuration shown in Figure 1 was used .to measure
the angular selectivity and compare it with the theoretical value. Thicknesses
from lmm to 5mm were tested. Both iron~doped and nominally pure-crystals
of lithium niobate were used. The half-power angular widths were found to
be in agreement with theoretically predicted values, These results show

that the theoretical angular packing density of multiple holograms is

achievable! This important finding was reported in Appl. Phys. Letters [27.
This publication gives experimental detalls as well as results and is repro-

duced here for completeness.

Additional experimental results have been obtained since Ref. 2 was
published. These show a much more detailed comparison of theory and experi-
ment for a broader range of reading angles. These data are shown in Figs. 2

and 3.
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1ITI. SURFACE INTERFERENCE EFFECTS

Many analyses of hologram reconstruction do not account for boundary
(surface) reflections. The diffraction efficiency results may be corrected
to include boundary reflections by multiplying by a transmittance factor.
This factor, T, is developed by us in Ref, 3, a copy of which is included
in this report. This factor is the same as the transmittance factor derived
by Kogelnik and given as Eq. (8) in Ref. 4, but with vd in that equation
replaced by the argument of the sine function in Eq. (27) in our paper [37].

From these results, ﬁe find that boundary reflections produced by the
surfaces can considerably change the diffraction effiﬁiency. The change
can be an increase or a decrease depending on whether the transmittance
factor is greater or léss than unity. This effect has been studied by
Cohen and Gordon [5]. For the grating parameters used here, T is typiéally
in the range 0.76 to 1.20. 1In practice, the boundary reflections can be
eliminated by antireflection coatings on the surfaces of the gratings,

Calculated results showing the thickness dependence of T for lithium
niobate are shown in Fig. 4. The effect of T as a function of reading

angle is shown in Fig. 5.
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IV, BEAM DIVERGENCE EFFECTS

The effect of writing beam divergence was studied. First, a hologram
was written with a frequency doubled Nd:YAG laser (3 = 530mm) with a beam
divergence of 0.143°, Second, a hologram was written with an argon laser
kk = 514.5nm) with a beam divergence of 0.035°, The angular selectivities
of these holograms were then measured with a He-Ne 1aser; The half-power
angular width in ﬁoth cases was found to be within 10% of the theoretical
value derived in our paper [27. Thus, it was concluded that writiﬁg beam

divergence has little effect on the final read-out process,

.
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V. RECORDING SENSITIVITY

Recordiﬁg materials must possess a number of important characteristicé
to achieve the high storage capacities that have been predicted for optical
memories. These requirements on the optical recording material include:
1. High sensitivity--It is desirable that only a small amount of optical
energy per unit area be needed to record the hologram of a data page. Table
3 in Ref. 6 (reproduced later in this report) lists the necessary writing
energy densities for‘a number of recording materials. For a practical system
an energy density of about 1 millijoule/cm2 or less will be needed. 2. Large
diffraction efficiency-~Diffraction efficiency is the fraction of the reading
light (reference beam) that is diffracted into the recpnst:uctéﬁ data beam.
It must be possiblekfo‘record a single hologram with a large diffraction
efficiency, so that in practice many holograms may be recorded at a single
location, each with an equal share of thg total maximm diffraction efficiency.
Therefore, it is desiraﬁle to have the maximum diffraction efficiency as
close to 100% as possible. 3. Erasable and rewritable—~For a rapid cycle
read-write-erase memory system, it must be possible to continuously alter
the stored data in the memory without encountering any degradation in the
.material characteristicsf 4, Long lifetime of stored information-~Stored
data should persist for long periods of time before having to be refreshed,
Ideally, storage should be permanent. 5. Non-volatile storage-Data_should
remain recorded in the memory in the absence of system power. 6. Nondestruc-
five readout~—It should be possible to perform an essentially unlimited
number of read operations without degrading or altering the storedldata.
7. Three dimensional storage—To achieve very high capacity storage, the
information should be stored in thick (volume) Holograms. Together with the

requirement of high diffraction efficiency, this means that the hologram

éﬁ/f}

i



should be a thick phase (nonabsorbing) hologram. 8. High resolution~
The storaée material obviously must be capable of recording the very fine
(wavelength size) variations of the interference pattern produced by the
intersection of the object and reference beams.

Considering all of the above material requirements, the photorefractive
materials (optiqally induced changes in index of refraction) appear to be
especlally promising. These materials, often ferroelectric crystals such
as lithium niobate and strontium barium niobéte {5BN), Eave been consider-
ably developed and improved, For example,.in the first use of lithium
nicbate as a recording material in 1968 a writing energy density of approxi-
mately 100 joules/cm2 was required [77]. Less than six yearé later, doped
versions of lithium niobate have now been shown in this work to exhibit

writing energy densities of 2 millijoules/cmz! We have announced this im-

provement in sensitivity of almost 5 orders of magnitude in Applied Physics

Letters 87. This artiecle is reproduced here for completeness. Fig. 6
depicts this recent jump in sensitivity with respect to other potential
recording materials, In addition, recent work by von der Linde et al. [9)

indicates that even higher sensitivities are possible in lithium niocbate!

.-/3;
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VI. SCATTERED LIGHT EFFECTS

Scattered light during hologram reconmstruction has beert recognized as
a problem for high capacity storage in lithium niobate [10].

We have reported [117] the presence of cones of diffrécted light upon
illuminétioﬁ of previously laser-expoéed crystals of lithiﬁm niobate. These
diffraction cones are shown to result from the internally recorded inter-
ference pattern (hologram) resulting from the iﬁterfgrence of the original
incident lasér beam with light scattered from material inhomogeneities,
Diffraction cones are observed in iron~doped lithium niobate crystals that
were exposed to a single laser beaﬁ and in crystals that were exposed to
two superposed laser beams (i.e., during conventional holographic recording).
In the two beam casé, the diffraction cones are present in addition to the
first order diffracted beam when the conventional two beam thick hologram
is reconstructed., The diffracted cones pro&uce the impression of scattered
light during hologram reconstruction, an effect that has previously been
reported in transition metal doped Iithium niobate [1017.

The diffractioﬁ cones, which have their apex in the éexposed region of
the crystal, are observed as rings (referred to as "scattefing" rings, or
diffraction rings) when a screen or a piece of film intersects the cone of
light. Figure 1 in Reference 11 shows two typical diffraction ring patterns.
For the single beam case, the observed results in lithium nicbate are effec=-
tively the samé as the experimental observations of Moran and Kaminow riz2)
for polymethyl methacrylate (PMMA), which had been exposed to ultraviolet
léser light.

The presence of diffracted cones of light represents a possible limi-

tation of heavily iron doped lithium niobate for data storage applications



because optical power is lost into the scattering induced diffraction cones
that could otherwise be used to increase the diffraction efficiency and thgs
the total bit capacity of the two beam grating hologram., However, it has
already been shown by Phillips, Amodei, and Staebler [107 that the "scattered”
light may be erased 1) by illumination with uniform incoherent light or 2) by
writing additional superposed hologréms at new angles. TIn the latter case;

"scattered" light from the previous holograms tends to be erased.

Our Ref. 11 is feproduced here for completeness,

N
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VII, MULTIPLE HOLOGRAM STORAGE

In the last four sections, problems associated with multiple hologram
storage have been discussed. The experimental results presented have been-
obtained using the basic experimental configuration shown in Fig. 1. Basic
diagnostic egperiments were performed by storing both single holograms and
by storing multiple holograms [137 at a single location. The theoretical
storage density of two dimensional (thin) holograms is 4 x 108 bits/cm2 (one
bit per square area one wavelehgth on a side) whereas in three dimensional
volume (thick) hélograms the theoretical storage density is 8 x 1012 bits/cm3
{one bit per cube volume wavelength on a side) [1l47]. Obviously for truly
high capacity storage,‘thick holograms (such as in optical crysta¥§) need to
be used instead of thin holograms (such as in photographic emulsions or
metal films). Holographic memory systems héﬁe been described that utilize
three-dimensional storage [15]. These systems superpose many holograms at
a single location inside the thick recording medium by using a different
reference beam angle for each hologram. The sﬁperpositioﬁ of multiple
holograms at ﬁ single volume location introduces the additional problem of
writing new holograms in that volume without affecting those already there,
When lithium niobate is used as the three dimensional storage material, this
problem may be solved by the application of an external elecﬁric field T167,
(1717. Thié greatly increases the sensitivity for writing while the sensi-
 tivity for erasure remains unchanged at a much lower value. Thus, as a new
hologram is written, the other holograms at that location are only slightly
efased.l Work is presently underway in our laboratory to duplicate these

electric field effects.

)9



VIII. RECORDED HOLOGRAM ANALYSIS

A'method for analyzing the diffraction efficiency of thick, lossless
transmission holograms in lithium niobate was developed. In lithium niobate
and similar ferroelectrics, the literature assumes the induced changes in
index of refraction are sinusoidal in nature, like the two beam plane wave
interference pattern. !The diffraction efficiency can be predicted for the
sinusoidal case [1], 1In actual fact, the index of refraction variation is
probably not sinusoidal due to the obviously nonlinear writing characterisﬁic
(diffraction efficiency versus exposure), which is experimentally observed.

We have developed [37] a method for calculating arbitrary-order diffrac-
tion efficiencies of thick, lossless transmission gratings with arbitrary
periodic grating shabes. For illustfation, numerical values of the dif- -
fraction efficiencies at the first three Bragg angles were calculated for
sinusoidal, équare wave, triangular, and sawtooth gratings. The complete

_details of this method are expounded in Ref. 3, which is duplicated in this
report. Also a comparison of our method to an extension of the Burckhardt
matrix method [18] is‘presented in Fig. 7. Our method was determined to be

20 times faster on the computer!
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Calculation of arbitrary-order diffraction efficiencies of

thick gratings with arbitrary grating shape*
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A method for calculating arbitrary-order diffraction efficiencies'of
thick, lossless transmission gratings with arbitrary periodic grating
shapes has been developed. This represents an extension of previous
work to nonsinusoidal gratings and to higher-order Bragg angles. A Fourier-
series representation of the grating is employed, along with a coupled-
mode theory of diffraction. For illustration, numerical values of the
diffraction efficiencies at the first three Bragg angles are calculated
ﬁor siﬁusoidal, Squére-wave, triangular, and saw-tooth gratings. Numerical
results for the same grating shapes with the same parameters are also
calculated for comparison, by extending Burckhardt's numerical method for
analyzing thick éinusoidal gratings. The comparison shows that the coupled-
mode theory prﬁvides results with relative computational ease and results
that are in agreement with calculations obtained by extending the more-rigorous
Burckhardt theory to nonsinusoidal grating shapes and to higher-order Bragg

angles.

Index Headings: Gratings, Diffraction.
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it is well known that thick dielectriq diffraction gratings differ
from thin gratings in a number of important ways. Among these are the
capability of high diffractién efficiency,l wavelength selectivity,l
angular selectivity,l and reduced noise.2 These give rise to the use of
thick gratings as highly efficient diffraction gratings, narrow-band
spectral filters,3 thick-grating optical components, such as lenses,4 and
imaging systems capaﬁle of spectral resolution of extended objects.2 In
the field of integrated opties, thick gratings may be used as diffraction
gratings for surface guiding of waves,s for thin-film distributed-feédback
1asers,6 for frequency-selective grating reflectors in thin-film lasers;T
for grating couplers for launching single-modé light waves into thin-film
waveguides,8’9 and for eiectro—optic grating defleétors and modulatqrs.lo

In addition, thick (volume) holograms may be regarded as recordings
of an infinite numberrof thick gratings. Thick holograms have attracted a
great deal of interest by their use in high-capacity informétion storage,l
in color holography,12 and in white-light reconstruction of holograms.13

The diffraction of a plane wave by a thick sinusoidal grating at or
near Bragg incidence has been considered by Burckhardt14 and by Kogelnik.1
Bufckhardt has treated this case by solving the exact electromaghetic
boundary-value problem and ﬁas obtained numerical results with a digital
computer to determine the eigemvalues of a matrix and to solve the resulting
set of linear algebraic equations. Kogelnik has obtained a closed-form
expression for the diffraction efficiency at the first-~order Bragg angle,
by employing a coupled-wave theory. Coupled-waveltheorie; glso have been
15,16

used successfully in the treatment of light diffraction by acoustic waves.

Recently, Chu and Témirl? treated this problem by using a guided-wave

23



technique. They assumed sinusoidal modulation of the relative permittivity
by the sound wave. Their treatment was based on a rigorous modal approach,
utilizing the interrelatiOnships between the characteristic mode and the
coupled-mode representations. With their method; not only the diffraction
efficiency at the first order but also that of any higher order can be
obtained.

In this paper, Chu and Tamir's approach is extended to examine the first-
and higher-order diffraction efficiencies of thick, arbitrary-shape gratings.
“Because of the periodicity of the graﬁing, a Fourier-series representation
of the grating is emplpyed. The gratings are assumed to be lossless. Tﬁe
reflections at surfaces of the gratings are at first negiected in the
derivation, because, in practice, these can be eliminated by antireflection
coatings. When surface and internal reflections are present, the results
are corrected by a multiplicative transmittance factor.l8 For 1illustration,
numerical values of the diffraction efficiencies at the first three Bragg
angles are calculated for sinusoidal, square-wave, triangular and saw-tooth
gratings. qu comparisen, numerical results for the same grating shapes with
the. same parameters are also calculated by extending Burckhardt'é numerical
method. The comparison shows that the results from these two methods are in
close agreement and that the present method is computationglly simpler and

more efficient.



THEORETICAL ANALYSIS

The model for é thick péricdic grating can be described by Fig. 1. The
x axis is chosen in the plane of incidence and parallel to the surfaces of
the medium, the z axis 1s perpendicular to the sqrfaces of the medium, and
the y axis is perpendicular to the papge. For convenlence, the fringe planes
of the grating are assumed to be perpendicular to the surfaces of the medium
and to the plane of incidence. The grating vector K is, therefore, parallel
to the x axis. Thus, for lossless periodic gratings, the fringes of the
grating can be represented by a spatial moduiation of the relative dieléctric

constant,

er (X) = 6(x)/e, = €., +~h§1 [echcos(th) + eshsin(th)], | (1)

where X = 2 /L, L is the period of the grating, € 1o is the average value of

€ .0 and e, and e, are the spatial modulations of € the subscripts ¢, s

h h

and h denoting the quantities connected with the cosine gratings, the sine
gratings and the h th-harmonic grating, respectively. Corresponding to the
distribution of the relative dielectric constant, the distributioen of the

refractive index of the medium is

n(x) = n_ + h§1 [nchCOS(hKX) + nshsin(th)], ' (2)

-

where n is the average refractive index of the medium, and' n , and ns are

ch h

the spatial modulations of n.

The electric field of the incident wave is assumed to be polarized

perpendicular to the plane of incidence (I modé) and is of the form

o’bg



exp[j(ﬂox + goz - wot)]. The wave propagation in the grating can be described

by the scalar wave equation

A R .

[o” + ks (0] E(x,2) = 0, | )
where k = 2o/ A, A is the free-space wavelength of the incident plane wave,
and E(x,z) is ﬁhe complex amplitude of the y component of the electric field,
which is independent of y.

Eq. (3) has been solved by Burckhardt,l4 using separation of variables,
an infinite-series solution for the x~dependent equation, aund a matrix method
to solve the eigenvalue problem associated with a truncated set of the resulting
infinite system of equations. Tﬁis approach has been used to obtain numerical
results for sinusoidal gratings. Kaspar19 has extended Burckhardt's method to
find the Qiffraction efficiency for monsinuscidal absorption gratings. He has
pointed out that when the absorption is strong, the phase-grating contribution
to the diffraction éfficiency is very small.

Chu and Tamir17 have shown that ﬁhe field inside the grating can be
‘described in terms of coupléd modes if the modulations of the relative dielectric
constant are very small, 1In general, in addition to the zeroth mode, many
higher-order modes are excited, because of the presence of the grating. For
an incident wave {(zero-order mode) of wavelength X\, and at an”angle 8y » the
fundamental grating will diffract this wave if the Bragg condition, m A=2L sin 9, ,
is satisfied or nearly satisfied. For this particular wavelength and angle, the
hérmonic gratingsrmay or may not produce diffraction, depending on whether or
not their corresPonding Bragg conditions are satisfied or nearly satisfied,

These diffracted modes of the fundamental and the harmonie gratings propagate

in the same direction.



The dimensionless quantities

- L 2 -
Gn = 20Ch 7 ) ecn h=1,23, &)
_ L .2 _
9y, = 2( T l-) LR h 1, 2, 3, . .. (5)
17,20

are called the effective-modulation indices. Because LR and LI would
typically be 10-4 or smaller, 9eh and q , are small even Lf L is many times
as large as ). For example, if 8d= 5% and ¢y = 10-4, then q 4 = 0.0066.

17,21 that two

When q is very small.comparéd to unity, it can be shown
coupled-wave equations and therefore two modes are suffiﬁient to describe

the coupling effects when the incident angle is equal to or neaf the Bragg
angle. Therefore, for an incident wave of wavelength A and at an angle g),

the electric field inside the grating can be written as the sum of the

fundamental mode and an arbitrary mode
E(x,2) = S_(z) exp(JTx) + 5 _(2z) exp(JTx), (6)

where ﬁo and ﬁm‘are the zeroth-mode and the m th-mode (with respecf to the
fuﬁdamental grating) tfansverse wave numbers, respectively, The.continuity‘
of the electric field at z = 0 and the Floquet theorem require that ﬁo‘= Mo
= k sin®_ and _=7_=1, - 207 /L. The tilde ” will henceforth be used to
denote the quantities in the dielectric medium when the gratingsare present.
The integer subscript m represents the m th~order diffraction. The integer

h represents the h th-harmonic gratiné. Diffraction occurs when the h th-
harmonic grating satisfies or nearly satisfies the Bragg condition m A=
2(L/h) sineo, where m reprgsents the m th mode (with respect to the h th-
harmonic grating) excited due to the h th-harmonic grating. - Exact-Bragg

conditions occur when'mh is equal to m/h where h divides evenly into m.

Near-Bragg conditions occcur for the ﬁavelength A 1) when the angle of

27



incidence is near, bﬁt not equal to eo, and/or 2) when the value of m is
1érge, and h divides ﬂearly evenly into m, so that m/h is almost an integer.
Thus, 3m(z) in Eq. (6) represents the total amplitude, together with the
propagation factor in the z directlon, of the diffracted mode due to all of
the gratings that satisfy or nearly satisfy the foregoing Bragg condition.
At ;he boundary z = d, BO propagates at the angle 8,, whereas gm propagates
at an éngle Bm; which is determined by

_ -1 T]m _ . ~L, .
em = - gin (—k-) = - sin (51n90

m A ‘

1 ” (?)
The diffracted modes due to the gratings that are far from obeying the Bragg
condition are assumed to be negligibly small compared with 30 and ﬁm.
Therefore, the interaction between'S0 and Em.can be characterized by the

coupled-mode equation322

ds m
0 T % =
dz ngSo B jti(cchmh + jcshmh)]sm 0, _ (8
dwm - m
T " Fabn NECqy - 300 13, = O, (9)

where 50 and Em are the longitudinai wave numbers inside the medium when the
gratings are absent. Theyrare given by §;= k(ero)%cos ¢ and 555 [kzero- [k
(ero)%sin @ - (2mnlL)]2]%, where ¢, the refraction angle in the medium, is
given by ¢ = sinwl[(sin eo)l(ero)%]. The bar notation will henceforth be
used to denote the quantities inside the medium when the gratings are absent.
For a gilven value of the integer m, the subscript h may be any integer that

divides evenly or nearly evenly into m, provided the corresponding h th-harmonic
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m
grating exists. The symbol I denotes the summation over all of these possibie

h _ .
values of h. The coupling coefficients in Egs. (8) and (9) are given by”’z1

= [ 1T @) (10)
¢h (m -1) L/h ch
™ E +£ 2) M (m,-1)! .
o1 1 2, m 2 "h
P = =7 b D) POom ) agy) )
o °m (2) (m, -1)!
If the grating does not exist, Cotm = © = 0, there is no coupling between

hmh shmh

S0 and gm and therefore no diffraction. Under this condition, only Eq. (8):
has physical significanée. It represents the propagation of the fundamental
mode (incident wave) inside the medium.

The solutions of Eqs. (8) and (9) are of the form

5,(2) = A exp(JE z) + B exp (i 2), (12)

5 (2) = A _exp(j§_z) + B exp(j§ _z). 7 (13)

The wave numbers Eo and Em can be found directly by substituting Eqs. (12) and

(13) into Eqs. {(8) and {(9). They are

_— €o+ gm ; Eo- Sm |2 o 2 - 2.% |
So,m 2 L=+ ( i Cchmh) + (-i Cshmh) 1% (14)

where the + sign corresponds to Eo and the - sign to Em. The constants Ao,

Bo, Am, and B are determined by the boundary conditions and

1

m ’ - -—
Ja, - (B -8 JA =0, . (15)

[ ]

I (C - iC )
h chmh shmh



m

[i (Cchrnh- ¢ shm1 ] - (§ - g ) =0, : (16)

which are obtained from Eqs. (9), (12),and (13). To specify the boundary
conditions, the amplitude of the incident wave is assumed to be unity at z=0

so that, from Eq. (12),
o

§0(0)=A0+B =1, | B (17)

Initially, the ampliﬁﬁde of the diffracted wave is zero. Therefore, evaluating

Eq. (13) at z = 0 gives
'ém(O) =A +B =0, (18)

Solving Egs. (153, (16), (17), and (18) for Ao, Bo’ Am’ and Bm giﬁes

AO=EO‘Em
go-gm
. o . _ m m L
R G, - +)4[(§cchmh>2+(zcshmh b
T2 @ -istaarci e (% )y 49
§0 gm h chmh "h shmh }
f‘"‘f“‘
gO-gm.
_ m m
: G +{E, -§m>2+4[(zc mh) +(Ecshmh )93
(6, - 5% + 4 Loy, " + (Eo,, »™)]
m } m
( ¢, )'j(EC )
A =-B = i Shm,h . (21)
¥ -§)z+4[(2c )2+(;.Ch )27y
° n SPm, h *
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For the exact-Bragg condition, Eﬁ = E; and Bm = Go. Hence, Eqs. (14), (19),

(20), and (21) become

" = ot 2 - 2.%
S, = B0 T LCE G )+ (B )%, (22)
Ao = 1/2 = Bo’ (23)
m m
(Z¢C ) - 3(EcC )
ch sh
A = -B =-1'- h h mh . (24)
m m 2 m 2 m 2. %
[« E Cchmh) + i shmh) ]
Thus, the transmitted and the diffracted modes are
3 = (jE { 20 )2+ ;C )2]!5 z 25
O(Z) = exP jgoz) cos [( h Chl'llh ( n Shmh }3 ( ) |
- L - . m 2 n 2%
5_(2) = J2A exp(§ 2) sin{[ ¢ ﬁ CChmh) + ( E Cshmh) 1% 2}, (26)

where Cch and Cshmh are given by Eqs. (10) and (11) with Em = Eo, and Am
is given by Eq. (24). Eq. (26) is the general formula for the m th-diffracted
mode due to any periodic grating when the incident angle of the zeroth mode
satisfies the Bragg condition m A= 2L sin BO. The diffraction efficiency for

the m th order of diffraction is defined as

A ’é’m(d) sr;(‘d)

m o~ ~ ? | (27)
SO(D) SO(O)

DE

and thus for exact-Bragg conditions

| 2., ™ 2 n
DEm=sin{[(zcc )"+ (TG

2.% . |
)14}, .
po Chmy, n S0 7 - 2%

where the asterisk * denotes complex conjugate. Upon substituting Egs. (10)

3 )

1



and (11), with Em = 50, into Eq. (28) and performing some algebraic manipulations,

we find that

2(m, -1) h
Lmh (e )

DE = sin ({2 - C 1 ]
‘ (m, -1) (2m -1) ’5
[ h (z)mh (mh-l)! (h) My A b (e o) €cosP

2(m -1) T
o mo C 1 L " (e o)

2 2)%
] } d]- (29)
(m, -1) (2m -1) E
b )" (Dt ) A B (egg)eosy

Eq. (29) is the general expression for the diffraction efficiency at the m th-
order Bragg angle for a periodic grating of arbitrary grating shape. For example,
the first-, second-, and third-order diffraction efficiencies for a grating, whose
dielectric constant profile can be expressed as a Fourier sine series, are

esind

— 1, (30)
2A(e 1:0) cos @

1

DE1 sin%

LG 1) nd '
DE, = sin [[ i +e_,) 1
2 2 3 527 9 '/‘u(e:ro);i cosy S
and ,
L (e )
1'.'lE3 = sin [[ Sl + 333] nd 7 }. (32)
16 h 2 h(ero) cosP :

Iin Eqs. (30), (31), and (32), only the Fourier grating components €510 €470 and
€3 are required to evaluate the diffraction efficiencies DEl, DEZ’ and DE3.
Table I gives these Fourier components, normalized to the amplitude of the

fundamental grating, € 1 for gratings having sinusoidal, square-wave, triangular,

and saw-tooth dielectric constant profiles. Note that the sinusoidal, square-
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wave, and triangular grating shapes can é;ch be represented by a Fourler cosine’

series also. In this case, the resultant diffraction efficiency expressions

contain only €.1° €a2° and a3 If n, << 0 and ny << no,.which are true in
1 ‘ . '

most cases , it can be showm that eoy = 2nonch and Sy T Znonsh. Therefore,

with (ero)% =0, Eq. (29) becomas

i (m, -1)
Lz(mh L rr(n‘)mh (nch):rlIrl

DE_ = sin’ {Izn 1 72 —0 2
m - SH L\ h'[ (mh-l) (2mh~1) cos¢y ]
(m -1)! (h) A '
- (m -1)
i ﬁ : (m‘h-l)] (2m -1} cosg ¥) dJ- (33
(m ~1)! (h) A S

The resulﬁs calculated with Eqs. (30), (31), and (32) do not apgree with
those calculated by use of Burckhardt's matrix method, This is because Burckhardt
takes the boundary reflections into accoﬁnt; whereas they are not included in |
the foregoing derivatiou.‘Aﬁur resylts may be corrected to include boundary
reflections by multiplying the diffraction efficiency by the trgnsmittance

factor,

(1-R)? [ 1+2Rcos (2pd)+R]
" 2.2 2. 2 2 (39
(I-R7)Y" + 4R2[cos (2vmd)+cos {(2gd)] - 4R(IHR )cos(2vmd)cos(2ad)
where R = sin2(9 - )/sinz(e +e), B =2m( )%(cos YA, and v =[( E C )2
. o Cp o ¢ ] ero @ b ' “m h chm}l

+ ('g Cshmh)2]25 evaluated with Em = E; for exact-~Bragg gonditions.. This factor
is the same as the transmittance factor derived by Kogélnik and given‘as Eq. (8)
in Ref. 18, but with vd in that equation replaced by the argument of the sine
function in Eq. (28) of this paper. This allows generalization to higher

diffraction orders and nonsinusoldal gratings.
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RESULTS AND DISCUSSION

The coupled-wave analysis in the preceding section was numerically
implemented on a UNIVAC 1108 computer and calculations were performed for
gratipgs having sinusoidal, square-wave, triangular, and saw-tooth distributions
of the dielectric constant. Table II gives numerical values for the diffraction
efficiencies at the first-, second-, and third~order Bragg angles for these

33

from Eqs. (30), (31), (32), and (34) with € 0" 2.3225 (value used in Refs. 14

and 18) and € 1" 10-4§r0. The fundamental spacing of these gratings is L =

gratings. These results represent DE1 71, DE2 72, and DE, T. as obtained

3.630 ym. (resulting from;recording with two beams of A= 632.8 nm at 90= ,5.00).
For‘bomparison, the resultS'obtaine& by extendinngurckhardt's numerical method
(ﬁatrix method) to nonsinuscidal gratings ére also shown in Table II. These
results were calculated by programming Bufckhardt's methed on a UﬁIVAC.IIOS
computer and using the UNIVAC Math Pack subroutines to solve the eigenvalue
problem and the set of linear algebraic equations, Table II shows that the
re;ults of these twé methods are in ¢lose agreement; the dpviation between
these two methods does not‘exceed 2.8% for diffraction efficiencies larger

than 5x10°%%. Diffraction efficiencies smaller than 5x10°°% are less significant
physically because the corresponding low-level diffracted intensities are
difficult to measure. Diffraction efficiencies of less than 5#10—8% have been
listed as zero in Table II. 1In addition to the resuits in Table II, we have
performed calculatiﬁns for other grating thicknesses (15um, 50um, 1500um, and
200bpm) and other fundamental grating spacings (1.222um and 1.822um). We found
that the deviation between the coupled-wave analysis and‘the matrix analysis

does not exceed 6.7% for any case with a diffraction efflelency larger than

i

3% | }i'{’



5x10—6%. Typically, the percentage deviation is a few tenths of one percent.
Although Burckhardt's numérical approach is rigorous, a number of
mathematical problems such as truncation of the matrix and discarding of large
positive eigenvalpes must be overcome. A discussion of these Is included in
Ref. 14. 1In addition, another mathematical difficulty assoclated with the
Burckhardt method, encountered in the present work, is a singularity that
arises in the process of solving a set of linear algebraic equations. For
pure phase gratings, Eg. (9) in Ref. 14 is real and symmetric. ﬁhen the incident
wave is at the Bragg‘angle, pairs of equal elements are introduced on the
principal diagonél of tﬁe matrix in that equation. Thus, when the modulétion.
amplitﬁde is small, pairs of equal eigenvalues are usually induced. This results
in a singularity in the matrix in Eq. (34) in Ref. l4; therefore, the equation
is nonsolvable. For the parameters in the particular examples of Ref. 14, this
problem does not occur because the modulation amplitude is large (0.0035 ero)'
However, the modulation amplitude may, in practice, be very small (of the order
10-4 orﬂfmaller) and the singularity pfoblem must, theréfore, be overcome. A
way to avoid the singularity is by shifting the incldent angle by a negligible
amount away from the Bragg angle. FPhysically, because the shift.iS'negligibly
small (10"5 degfees was used here), the incident wave can still be regarded as
béing incident at the Bragg angle. In the present wmethod, a closed-form
expression for the diffraction efficiency is obtained, aﬁd no mathematical
difficulties arise in the process of calculation, The computor time nacded iﬁ
thé present method is only about 1/20 of that needed with the extended Burckhardt
method to perform the same calculations. &

From the results, we found that boundary reflections produced by the surfaces



can considerably change the diffraction efficiéncy. The change can be an
increase or a decrease depending on whether the transmittance factor is gréater
or less than unity. This effect has been studied by Cohen énd Gordon.23 For
the grating parameters used here, © 1s typically in the range 0.70 to 1.20. In
practice, the boundary reflections can be eliminated by aqtireflection coatings

on the surfaces of the gratings.. We also found that the diffraction efficiency

of a given higher 6rder is mainly contributed by the corresponding higher-order
Fourier compounent of the grating. The difference between the diffraction
efficiencies for sinusoidal and nonsinusoidal gratings (having the same average

aﬁd fundamental grating gmplitudes) appears only in the higher-order diffréctions.
The higher-order diffraction efficiencies, however,_very strongly depend on the
grating shape. Also, for small_grating modulations, the diffraction efficiencies
at any order are very dependent on grating thickness; they increase withr
increasing thickness. Marcuse24 has suggested that, for small-amplitude thick
nonsinusoidal phase gratings, the higher-order diffraction efficiencies might

be estimated from the relative amblitudes of the spatial harmonics, consistenf

with the assumption of ﬁerturbation théory that only one Fourier component can
satisfy the Bragg condition for a given wavelength incident wave. Our caiculations
show that this is true except when the amplitude of the harmonic grating (h =*‘m)
‘is very small compared to the amplitude of the fundamental and the lo&er-order
contributing harmonic gratings. In this case, the confributions froﬁ higher-

order diffractions(h<m) are significant. In addition, we found that the agreement
between the coupled-wave method and the matrix method is better when the h = m

term is dominant over hem terms, Rigrod25 has shown that for reflection gratings
there is no correlation between higher-order diffraction efficiencies and the

corresponding harmonics of the index profile. The present results show that



this is not true for transmission gratings.

The present method can be used to analyzé the diffraction efficiency of
any thick periodic grating regérdless of the dielectric constant profile (grating
shape). The examples analyzed here have héd even or odd symmetry. However,
the method does not require any symmetry to exist, but only that the grating
be periodic. From the gratings analyzed, differeﬁt gratiﬁg shapes have shown
different distributions of higher-~order diffraction efficiencies. This indicates
the possibility that tﬂis-type of analysis might be used in fgverse to determine
the grating shapes éf thick hologram gratings such as those recorded in
ferroelectric crystals.26 Due to nonlinearities in these materials, a sinusoidal
exposure does not necessarily produce a sinusoidal change in indéx‘of refraction.
Depending on which of the possible physical mechanisms is 0perafive in a éiven
situation (such as drift of charge carriers or diffusion of carriers) different
grating shapes arelgener'ated.z7

Eurther, the derivations in the preceding section have assumed that the
grating medium is lossless, that the ératiﬁgs are unslanted with,reépect to the
grating boundaries (gratinglvector parallel to surfaces of medium), and
that the incident wave is H mode polarized. If the medium is lossy, the results
still apply except that the coupling coefficients are complex, and therefore
‘the attenuation factors are implicitly contained in the expressions for the
transmitted wave and the diffracted wave. The method presented here can also

be stralghtforwardly applied to the analysls of slanted gratings and to E mode

polarization of the incident wave.



CONCLUSIONS

A simple method of calculating arbitrary-order diffraction efficiencies of
thick transmission gratings with arbitrary periodic graﬁing shapes has been
presented. The analysis uses a coupled-mode theory to obtain a closed~form
expression for the diffraction efficiency of an arbitrary order. This method
provides results with reiative computational ease and results that are in

close agreement with those obtained by extending Burckhardt‘s numerical method.
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FIGURE CAPTION

Figure 1, Geometry of a thick grating with unslanted fringes, The
spatial modulation of ¢ is indicated by the line pattern.
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TABLE I. First three Fourier components for various relative dielectric
constant profiles (grating shapes). Components are normallzed to the

amplitude of the fundamental grating, €1 -

Grating Sinuso idal Square-wave Triangular Saw-tooth
Compgnent grating grating grating grating
€ 1/ .1 1 1 1 1

e 2/ €1 0 0 0 -1/2
633/ &1 0 1/3 ‘ -=1/9 1/3




TABLE II. Compariscn of diffraction gefficiency in percent at the first-, second-, and third-order Bragg angles

" for transmission gratings with boundary reflections and with the same average and fundamental Fourier grating

4

components. The grating parameters are €0 = 2.3225 (value used in Refs. 14 and 18), esl = 10" Ero

L = 3.6303 um, and the wavelength X\ = 0.6328,m., Diffraction efficiencies of less than 5 x 10-8% are listed as

0.00(-5).
Diffraction Efficiency
(in % with power of ten in parentheses)
Grating Diffraction p - ; - -~ ; : n —
thickness  order Sinusoidal grating Square-wave grating Triangular grating Saw-tooth grating
(microns) _ - - ' -
Coupled Matrix Coupled Matrix Coupled Matrix Coupled Matrix
wave wave wave wave _
1 1.64(~3) 1.64(-3) 1.64(-3) 1.64(-3) 1.64(-3) 1.64(~-3) 1.64(-3) 1.64(-3)
10 2 0.00(~5y 0.00(-5) 0.00(-5) 0.00(-3) 0.00(-5) 0.00(-5) 3.81(-4) 3.87(-4)
3 0.00(~-5) 0.00(-5) 1.14(-4) 1.14(-4) 1.26(-5) 1.25(-5) 1.14(-4) 1.13(-4)
1 1.57(-1) 1.57(-1) 1.57(-1) 1.57(-1) 1.57(-1) 1.37(-1) 1.57(-1} 1.57(-1)
100 2 0.15(-3)} 0.13(-5) 0.15(-5) 0.14(-5) 0.15(-5) 0.13(-5) 2.49(-2) 2.56(-2)
3 0.00(-5) 0.00(-5) 1.12{-2) 1.12(-2y 1.25(-3) 1.23(-3) 1.12(-2)y 1.12(-2)
1 1.21(+1)  1.21(+1) 1.21(+1) 1.23(+1) 1.21(+1) 1.21¢+1) 1.21(+1) 1.21(+1)
1000 2 2.53(=4) 2.46(-4) 2.53(-4) 2.46(-4) 2.53(-4) 2.46(-4) 4.16(+0) 4.26(+0)
3 0.00(-5) 0.00(-5) 1.64(+0) 1.64(+0) 1.83(-1) 1.84(-1) 1.64(4+0) 1l.66(+0)




IX, SYSTEMS CONSIDERATIONS

A three~dimensional lithium niobate recording and storage system is
shown schematically in Fig. 8. The systems aspects of such an optical
recording scheme were thoroughly reviewed in this study. One of the results
of this review was the publication of z state-of-the-art review [67. This
article is reproduced in this report and is a self-contained review. An-
other result of this review was a change in our experimental reading system.
An angular accessing system was developed and it is illustrated in Fig. 9.
This system allows accurate and simple angular beam positioning without the

need to rotate the erystal.
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